Семён7 лет назад
Cos^2(2x) +cos^2(3x) = 1;
(2cos^2x - 1)^2 + (4cos^3x - 3cosx)^2 = 1;
4cos^4x - 4cos^2x + 1 + 16cos^6x - 24cos^4x + 9cos^2x = 1;
16cos^6x - 20cos^4x + 5cos^2x = 0;
cos^2x(16cos^4x - 20cos^2x + 5) = 0;
cos^2x = 0 или 16cos^4x - 20cos^2x + 5 = 0;
1) cosx = 0;
x = pi/2 + pin, n ∈ Z;
2) 16cos^4x - 20cos^2x + 5 = 0;
Пусть cos^2x = t, t ∈ [0;1];
16t^2 - 20t + 5 = 0;
D = 400 - 4 * 16 * 5 = 400 - 320 = 80;
t = (20 +- sqrt80)/32 = (5 +- sqrt5)/8;
cos^2x = (5 +- sqrt5)/8;
cosx = +- sqrt((5 +- sqrt5)/8);
x = +-arccos(+- sqrt((5 +- sqrt5)/8)) + 2pin.
Ответ: pi/2 + pin, n ∈ Z или +-arccos(+- sqrt((5 +- sqrt5)/8)) + 2pin, n ∈ Z.